橡胶衬套扭转按压耐久试验
装配方式:
a)固定内支撑管,保证试验过程中内支撑管不运动不旋转;
b)外部钢套连接试验设备,扭转和载荷加载均施加在外钢套上;
加载方式:
a)沿F方向施加周期载荷,载荷值为0~1.7kN;
b)扭转载荷:外部钢套相对于装配位置往复扭转,扭转角度为±10°;
c)扭转载荷和加载力值具有共同的加载频率,频率为0.5Hz;
d)扭转载荷和加载力值同步达到zui大值;
e)试验次数:200万次
基本假定:由相同的材料制成的构件(元件或结构细节),如果在疲劳危险区承受相同的局部应变能历程,则它们具有相同的疲劳裂纹形成寿命。
能量法的材料性能数据主要是材料的循环应力一应变曲线和循环能耗一寿命曲线。虽然在现有的能量法中均假设各循环的能耗是线性可加的,而事实上由于循环加载过程中材料内部的损伤界面不断扩大,因此能耗总量与循环数之间的关系是非线性的。这一关键问题导致了能量法难于运用于工程实际。因此能量法可能不是一种十分合理和有前途的方法。
。
断裂力学理论是基于材料本身存在着缺陷或裂纹这一事实,以变形体力学为基础,研究含缺陷或裂纹的扩展、失稳和止裂。通过对断口定量分析得出构件在实际工作中的疲劳裂纹扩展速率(适用较广泛的是Paris疲劳裂纹扩展速率公式),合理地对零、部件进行疲劳寿命估算,确定构件形成裂纹的时间,评价其制造质量,有利于正确分析事故原因。事实上这种方法解决了工程中许多灾难性的低应力脆断问题,弥补了常规设计方法的不足,现已成为失效分析的重要方法之一。
按裂纹产生的时间,又可将阶段定义为始裂寿命,第二阶段定义为为裂纹扩展寿命(习惯上称剩余寿命)。对寿命的度量一般以经历的循环荷载的次数来表示。该理论认为,疲劳极限是客观存在的,也就是说,当构件承受的循环荷载幅值小于该构件材料的疲劳极,该构件不可能因产生裂纹导致破坏,即从疲劳寿命角度考察其寿命是的。此外疲劳寿命不仅与循环载荷幅值和材料物理、化学特性有关,还与载荷的变化频率有关,故疲劳寿命有高周疲劳与低周疲劳之分。
以上信息由专业从事疲劳耐久性测试中心的威阔检测于2025/1/6 17:23:08发布
转载请注明来源:http://jinghua.mf1288.com/wkjcjs-2832112321.html